Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Soot Oxidation Kinetics in Diesel Particulate Filters

2007-04-16
2007-01-1129
Direct catalytic soot oxidation is expected to become an important component of future diesel particulate emission control systems. The development of advanced Catalytic Diesel Particulate Filters (CDPFs relies on the interplay of chemistry and geometry in order to enhance soot-catalyst proximity. An extensive set of well-controlled experiments has been performed to provide direct catalytic soot oxidation rates in CDPFs employing small-scale side-stream sample exposure. The experiments are analyzed with a state-of-the-art diesel particulate filter simulator and a set of kinetic parameters are derived for direct catalytic soot oxidation by fuel-borne catalysts as well as by catalytic coatings. The influence of soot-catalyst proximity, on catalytic soot oxidation is found to be excellently described by the so-called Two-Layer model, developed previously by the authors.
Technical Paper

A Selective Particle Size Sampler Suitable for Biological Exposure Studies of Diesel Particulate

2006-04-03
2006-01-1075
The objective of this study is the design, construction and evaluation of a Selective Particle Size (SPS) sampler able to provide continuous delivery of diesel soot particles of specific size ranges. The design of the sampler combines principles of aerosol transport phenomena and separation technologies. Particles smaller than a given size are removed from the exhaust by diffusional deposition, while removal of particles above a given size is achieved by low pressure inertial impaction. The main application of the developed sampler is the exposure of biological samples such as cell and tissue cultures to selected sizes of diesel exhaust particles. By applying the SPS sampler to diesel exhaust it is demonstrated that it is possible to obtain two aerosol streams with widely separated particle size distributions (of nanometric dimensions), suitable for biological exposure studies.
Technical Paper

A Multi-Reactor Assembly for Screening of Diesel Particulate Filters

2006-04-03
2006-01-0874
In this paper a fast DPF screening procedure is proposed using small-scale filter samples of different technologies in a well-controlled environment but under realistic engine exhaust conditions. The DPF samples are evaluated in a specially built Multi-Reactor Assembly (MRA) with respect to their flow resistance, filtration efficiency, soot loading behavior, soot oxidation behavior, as well as their ash induced ageing behavior.
Technical Paper

Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity

2005-04-11
2005-01-0670
Diesel Particulate Filters (DPFs) need to be periodically regenerated in order to achieve efficient and safe vehicle operation. Under typical diesel exhaust conditions, this invariably requires the raising of the exhaust gas temperature by active means, up to the point that particulate (soot) oxidation can be self-sustained in the filter. In the present work the development path of an advanced catalytic filter technology is presented. Full scale optimized Catalytic Diesel Particulate Filters (CDPFs) are tested in the exhaust of a light-duty modern diesel engine in line with a Diesel Oxidation Catalyst (DOC). The management of the DOC-CDPF emission control system is facilitated by a virtual soot sensor in order to ensure energy-efficient operation of the emission control system.
Technical Paper

Study on the Filter Structure of SiC-DPF with Gas Permeability for Emission Control

2005-04-11
2005-01-0578
The pore structure of DPF (Diesel Particulate Filter) is one of the key factors in contributing the fuel consumption and the emission control performance of a vehicle. The pressure loss of mini samples (1 in. in diameter, 2 in. in length) with various pore structures was measured at relatively low filtration velocity (< 5 cm/sec). Then the obtained data were evaluated by using an index of “permeability”. As a result, among the parameters which characterize the pore structure, it was found that the size of the pore diameter and the sharpness of pore distribution were the most contributing factors in reducing pressure loss which in turn is related to the fuel consumption performance when the cell structure was fixed. On the other hand, it was found that the gas permeability was not affected significantly by any parameter when the catalyst was coated because the coating caused a broadening of the pore distribution.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Progress in Diesel Particulate Filter Simulation

2005-04-11
2005-01-0946
DPF design, system integration, regeneration control strategy optimization and ash ageing assessment, based on a traditional design of experiments approach becomes very time consuming and costly, due to the high number of tests required. This provides a privileged window of opportunity for the application of simulation tools and hence simulation is increasingly being used for the design of exhaust after-treatment systems with a Diesel Particulate Filter (DPF). DPF behavior depends strongly on the coupling of physico-chemical phenomena occurring over widely disparate spatial and temporal scales and a state-of-the-art simulation approach recognizes and exploits these facts introducing certain assumptions and/or simplifications to derive an accurate but computationally tractable DPF simulation tool, for the needs of industrial users.
Technical Paper

Microstructural Aspects of Soot Oxidation in Diesel Particulate Filters

2004-03-08
2004-01-0693
Diesel Particulate Filter (DPF) behavior depends strongly on the microstructural properties of the deposited soot aggregates. In the past the issue of the growth process of soot deposits in honeycomb ceramic filters has been addressed under non-reactive conditions and the influence of the filter operating conditions has been defined in terms of the dimensionless Peclet number. In the present work appropriate soot cake microstructural descriptors are studied under reactive conditions for different oxidation modes. To this end the effect of deposit microstructure on the soot oxidation kinetics is investigated. Different microstructural models for the reacting soot deposit are examined in a unified fashion and a generalized constitutive equation is obtained, describing several modes of microstructure evolution (shrinking layer, shrinking density, discrete columnar and continuous columnar).
Technical Paper

The Optimum Cell Density for Wall-Flow Monolithic Filters: Effects of Filter Permeability, Soot Cake Structure and Ash Loading

2004-03-08
2004-01-1133
A major challenge in the development of diesel filter systems is the selection of the appropriate filter medium in terms of its geometric configuration (cell density, wall thickness) and its physical properties (porosity, pore size). This selection aims to achieve minimization of the filter pressure drop as well as more efficient filter regeneration. The aim of the present work is to provide engineering criteria to support the design and selection of suitably sized wall-flow monolithic filters for diesel particulate control.
Technical Paper

Simulation of Triangular-Cell-Shaped, Fibrous Wall-Flow Filters

2003-03-03
2003-01-0844
In the present work we apply a computational simulation framework developed for square-cell shaped honeycomb Diesel Particulate Filters to study the filtration, pressure drop and soot oxidation characteristics of recently developed triangular-cell-shaped, high porosity wall-flow filters. Emphasis is placed on the evaluation of the applicability and adaptation of the previously developed models to the case of triangular channels. To this end Computational Fluid Dynamics, asymptotic analysis, multichannel and “unit-cell” calculations are employed to analyze filter behavior and the results are shown to compare very well to experiments available in the literature.
Technical Paper

Multichannel Simulation of Soot Oxidation in Diesel Particulate Filters

2003-03-03
2003-01-0839
In recent years advanced computational tools of Diesel Particulate Filter (DPF) regeneration have been developed to assist in the systematic and cost-effective optimization of next generation particulate trap systems. In the present study we employ an experimentally validated, state-of-the-art multichannel DPF simulator to study the regeneration process over the entire spatial domain of the filter. Particular attention is placed on identifying the effect of inlet cones and boundary conditions, filter can insulation and the dynamics of “hot spots” induced by localized external energy deposition. Comparison of the simulator output to experiment establishes its utility for describing the thermal history of the entire filter during regeneration. For effective regeneration it is recommended to maintain the filter can Nusselt number at less than 5.
Technical Paper

Microstructural Properties of Soot Deposits in Diesel Particulate Traps

2002-03-04
2002-01-1015
As demand for wall-flow Diesel particulate filters (DPF) increases, accurate predictions of DPF behavior, and in particular of the accumulated soot mass, under a wide range of operating conditions become important. This effort is currently hampered by a lack of a systematic knowledge of the accumulated particulate deposit microstructural properties. In this work, an experimental and theoretical study of the growth process of soot cakes in honeycomb ceramic filters is presented. Particular features of the present work are the application of first- principles measurement and simulation methodology for accurate determination of soot cake packing density and permeability, and their systematic dependence on the filter operating conditions represented by the Peclet number for mass transfer. The proposed measurement methodology has been also validated using various filters on different Diesel engines.
Technical Paper

Spatial Non-Uniformities in Diesel Particulate Trap Regeneration

2001-03-05
2001-01-0908
Diesel particulate trap regeneration is a complex process involving the interaction of phenomena at several scales. A hierarchy of models for the relevant physicochemical processes at the different scales of the problem (porous wall, filter channel, entire trap) is employed to obtain a rigorous description of the process in a multidimensional context. The final model structure is validated against experiments, resulting in a powerful tool for the computer-aided study of the regeneration behavior. In the present work we employ this tool to address the effect of various spatial non-uniformities on the regeneration characteristics of diesel particulate traps. Non-uniformities may include radial variations of flow, temperature and particulate concentration at the filter inlet, as well as variations of particulate loading. In addition, we study the influence of the distribution of catalytic activity along the filter wall.
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

Inertial Contributions to the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0909
Wall-flow Diesel particulate filters operating at low filtration velocities usually exhibit a linear dependence between the filter pressure drop and the flow rate, conveniently described by a generalized Darcy's law. It is advantageous to minimize filter pressure drop by sizing filters to operate within this linear range. However in practice, since there often exist serious constraints on the available vehicle underfloor space, a vehicle manufacturer is forced to choose an “undersized” filter resulting in high filtration velocities through the filter walls. Since secondary inertial contributions to the pressure drop become significant, Darcy's law can no longer accurately describe the filter pressure drop. In this paper, a systematic investigation of these secondary inertial flow effects is presented.
Technical Paper

Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging

2000-03-06
2000-01-1016
Compliance with future emission standards for diesel powered vehicles is likely to require the deployment of emission control devices, such as particulate filters and DeNOx converters. Diesel emission control is merging with powertrain management and requires deep knowledge of emission control component behavior to perform effective system level integration and optimization. The present paper focuses on challenges associated with a critical component of diesel emission control systems, namely the diesel particulate filter (DPF), and provides a fundamental description of the transient filtration/loading, catalytic/NO2-assisted regeneration and ash-induced aging behavior of DPF's.
Technical Paper

Periodically Reversed Flow Regeneration of Diesel Particulate Traps

1999-03-01
1999-01-0469
Diesel particulate filter regeneration (through oxidation of the collected soot particles) is not currently possible under all engine operating conditions without additional external thermal energy. The exploitation of the autothermal properties of the reverse flow reactor has been suggested to reduce further the soot ignition temperature and hereby is studied for the periodically reversed flow regeneration of soot particulate filters, with the aid of a mathematical model for the regeneration process, validated against experimental data. The numerical results confirm the capability of the new technique to effectively succeed where conventional regeneration fails, extending thus the operating limits of already practiced regeneration techniques (thermal or catalyst-assisted) and setting the stage for the construction of an industrial prototype.
Technical Paper

Optimized Filter Design and Selection Criteria for Continuously Regenerating Diesel Particulate Traps

1999-03-01
1999-01-0468
Upcoming (2005) particulate matter standards for diesel powered vehicles are likely to require the deployment of aftertreatment devices, such as particulate filters to ensure emissions compliance. A major challenge in the development of diesel filter systems has been the achievement of filter regeneration by the oxidation of the collected particulate matter in a reliable and cost-effective manner. Recently the emergence of the so-called continuously regenerating trap (CRT™) in conjunction with the future availability of very low-sulphur diesel fuel, represents a promising solution to the diesel particulate control problem. In the present study, design and selection criteria are devised, regarding the sizing of wall flow diesel particulate filters for application in CRT™ systems, employing a range of analytical and 3-D CFD tools validated against experimental data.
Technical Paper

Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency

1989-02-01
890405
The present study investigates the pressure drop and filtration characteristics of wall-flow diesel particulate monoliths, with the aid of a mathematical model. An analytic solution to the model equations describing exhaust gas mass and momentum conservation, in the axial direction of a monolith cell, and pressure drop across its porous walls has been obtained. The solution is in very good agreement with available experimental data on the pressure drop of a typical wall-flow monolith. The capture of diesel particles by the monolith, is described applying the theory of filtration through a bed of spherical collectors. This simple model, is in remarkable agreement with the experimental data, collected during the present and previous studies, for the accumulation mode particles (larger than 0.1 μm).
X